Lectures: 2,005 | Views: 38,199,216 | Subscribers: 287,239 | Subscribe
Resting Membrane Potential of Neuron
When the neuron is not generating any action potential on its membrane, it is said to be at rest and the voltage difference between the two sides of the membrane is known as the resting membrane potential. For most neuron cells, the resting membrane potential is around -70 millivolts. This electric potential difference (also known as the voltage difference) is generated as a result of the movement of ions across the cell membrane. There is a higher concentration of sodium ions on the outside of the cell with respect to the inside. Conversely, there is a higher concentration of potassium ions inside the cell than the outside. The cell membrane contains integral proteins that passively allow the diffusion of these ions down their electrochemical gradient. The cell membrane is naturally much more permeable to potassium than to sodium. Due to this fact, the cell membrane will be more negative on the inside than on the outside.
[{"id":"-_uIDESvr6Y","title":"Neuron Structure and Function","link":"http:\/\/www.aklectures.com\/lecture\/neuron-structure-and-function"},{"id":"M0JWkOnnOVw","title":"Resting Membrane Potential of Neuron","link":"http:\/\/www.aklectures.com\/lecture\/resting-membrane-potential-of-neuron"},{"id":"N8lFrHo0FkM","title":"Initiation of Action Potential","link":"http:\/\/www.aklectures.com\/lecture\/initiation-of-action-potential"},{"id":"KWIWemjaHJA","title":"Propagation of Action Potential","link":"http:\/\/www.aklectures.com\/lecture\/propagation-of-action-potential"},{"id":"X4hl5hKDmHw","title":"Myelination and Saltatory Conduction","link":"http:\/\/www.aklectures.com\/lecture\/myelination-and-saltatory-conduction"},{"id":"rxhqKXvkYXU","title":"Synaptic Terminal (Neuromuscular Junction)","link":"http:\/\/www.aklectures.com\/lecture\/synaptic-terminal-neuromuscular-junction"},{"id":"jpimow0N0BU","title":"Secondary Messenger Systems","link":"http:\/\/www.aklectures.com\/lecture\/secondary-messenger-systems"},{"id":"n7YCZZ_wg2U","title":"Neuroglia (Glial Cells)","link":"http:\/\/www.aklectures.com\/lecture\/neuroglia-glial-cells"},{"id":"IEGphXyKJgI","title":"Introduction to Nervous System","link":"http:\/\/www.aklectures.com\/lecture\/introduction-to-nervous-system"},{"id":"m8V9fldkDv8","title":"Central Nervous System","link":"http:\/\/www.aklectures.com\/lecture\/central-nervous-system"},{"id":"pbzbVM5W-Ak","title":"Somatic Nervous System","link":"http:\/\/www.aklectures.com\/lecture\/somatic-nervous-system"},{"id":"-rGZfOoZgzI","title":"Autonomic Nervous System (Sympathetic and Parasympathetic)","link":"http:\/\/www.aklectures.com\/lecture\/autonomic-nervous-system-sympathetic-and-parasympathetic"},{"id":"1PGIXXuFu14","title":"Structure of the Human Eye","link":"http:\/\/www.aklectures.com\/lecture\/structure-of-the-human-eye"},{"id":"3LyWqpknNFQ","title":"Structure of the Human Ear","link":"http:\/\/www.aklectures.com\/lecture\/structure-of-the-human-ear"}]
Comments
Playlists
Login to create and share playlists