Lectures: 2,005 | Views: 38,199,216 | Subscribers: 287,239 | Subscribe
Properties of Enzymes
Enzymes are biological molecules with remarkable capabilities - they act on cellular reactions and speed up the rates at which they occur. Without these biological catalysts, cellular processes would halt to a rate that would make life impossible, at least in the way we know it today. Enzymes (1) act as biological catalysts, speeding up the rates of reactions (2) transform one form of energy into a much more useful form of energy (3) do not act alone and typically require helper molecules called cofactors (4) are highly specific, which means they bind to specific substrate and catalyze a single reaction or a set of closely related reactions (5) are mostly proteins but some RNA molecules can also act as catalysts and (6) are not depleted and remain unchanged at the end of the reaction.
[{"id":"Gy3fEdy9cCA","title":"Properties of Enzymes","link":"http:\/\/www.aklectures.com\/lecture\/properties-of-enzymes"},{"id":"tPCOEUo6J8s","title":"Enzymes' Effect on Activation Energy and Free Energy","link":"http:\/\/www.aklectures.com\/lecture\/enzymes-effect-on-activation-energy-and-free-energy"},{"id":"u_IQu7h6xfo","title":"Gibbs Free Energy and Spontaneity","link":"http:\/\/www.aklectures.com\/lecture\/gibbs-free-energy-and-spontaneity"},{"id":"NEQ9WS8w-2I","title":"Enzymes Stabilize Transition State","link":"http:\/\/www.aklectures.com\/lecture\/enzymes-stabilize-transition-state"},{"id":"xzeg7ult6pM","title":"Properties of Active Sites, Lock-and-Key Model and Induced-Fit Model","link":"http:\/\/www.aklectures.com\/lecture\/properties-of-active-sites-lock-and-key-model-and-induced-fit-model"},{"id":"htZgbALo8uE","title":"Effect of Enzymes on Rate Law and Rate Constant","link":"http:\/\/www.aklectures.com\/lecture\/effect-of-enzymes-on-rate-law-and-rate-constant"},{"id":"yD6CTA-tT6A","title":"Effect of Enzymes on Rate Law and Rate Constant (Part II)","link":"http:\/\/www.aklectures.com\/lecture\/effect-of-enzymes-on-rate-law-and-rate-constant-part-ii"},{"id":"NVDxNal06zM","title":"Derivation of Michaelis-Menten Equation","link":"http:\/\/www.aklectures.com\/lecture\/derivation-of-michaelis-menten-equation"},{"id":"OOzj_dFzPH4","title":"Derivation of Michaelis Menten-Equation (Part II)","link":"http:\/\/www.aklectures.com\/lecture\/derivation-of-michaelis-menten-equation-part-ii"},{"id":"ALwziZSRiqM","title":"Michaelis-Menten Equation","link":"http:\/\/www.aklectures.com\/lecture\/michaelis-menten-equation"},{"id":"ZU2EAZQ6Mok","title":"Michaelis Constant","link":"http:\/\/www.aklectures.com\/lecture\/michaelis-constant"},{"id":"KM2Kq9L_V4M","title":"Maximal Velocity and Turnover Number of Enzymes","link":"http:\/\/www.aklectures.com\/lecture\/maximal-velocity-and-turnover-number-of-enzymes"},{"id":"EUunw7voY-o","title":"Catalytic Efficiency of Enzymes (kcat\/Km)","link":"http:\/\/www.aklectures.com\/lecture\/catalytic-efficiency-of-enzymes-kcat-km"},{"id":"5dhAuaZMCUg","title":"Catalytic Efficiency of Enzymes (kcat\/Km) - Part II","link":"http:\/\/www.aklectures.com\/lecture\/catalytic-efficiency-of-enzymes-kcat-km-part-ii"},{"id":"pWURzs8GiB4","title":"Sequential and Ping-Pong Reactions","link":"http:\/\/www.aklectures.com\/lecture\/sequential-and-ping-pong-reactions"}]
Comments
Playlists
Login to create and share playlists